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Abstract

We present a novel linear scaling ab initio total energy electronic structure calculation method,

which is simple to implement, easily to parallelize, and produces essentially the same results as the

direct ab initio method, while it could be thousands of times faster. Using this method, we have

studied the dipole moments of CdSe quantum dots, and found both significant bulk and surface

contributions. We also found a strong geometry dependence for the bulk dipole contribution.

PACS numbers: 71.15.Ap, 73.22.-f
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I. INTRODUCTION

In the past decade, we have witnessed an increasing number of experimental investiga-

tions of structural, electronic, and optical properties of ever more complex nanostructures.

This trend calls for a corresponding set of theoretical ab initio calculations on these nanosys-

tems, some of which may contain tens of thousands of atoms. However, due to the O(N3)

computational scaling [1] of the direct density functional theory (DFT), it can only be ap-

plied to about one to two thousand atoms despite of the ever increasing computer powers

and parallelism [2]. Over the last 15 years, many linear scaling O(N) electronic structure

algorithms have been proposed [3]. A common algorithm is based on localized orbitals. Un-

fortunately, the use of localized orbitals can lead to local minimum in the energy functionals,

causing convergence problem in the calculations [12]. Besides, it is difficult to represent the

local orbitals with planewave basis which is widely used in material science simulation. The

overlaps between neighboring local orbitals also make the code parallelization not so straight

forward. Overall, there is a continue need for new and simple O(N) ab initio methods which

can be used by a wider population in the computational electronic structure community.

In this paper, we present a new O(N) ab initio electronic structure method and use

it to study dipole moments in CdSe quantum dots. This method satisfies the following

criteria for a good modern O(N) algorithm:(1) It is accurate, obtaining essentially the same

results compared to the direct ab initio method; (2) It is simple, which makes it easy to be

implemented from an existing ab initio code; (3) It is trivially parallelizable, which makes

it suitable for large scale computation; (4) It is applicable to any ab initio method, not

restricted to DFT.

II. FORMALISM

Our method is based on the observation that the total energy of a given system can be

split into two parts: the electrostatic energy and the quantum mechanical energy (e.g, the

kinetic energy and exchange correlation energy). While the electrostatic energy is long-range

and must be solved via a global Poisson equation, the computationally expensive quantum

mechanical energy is short-range [5] and can be solved locally. Our idea is to divide the whole

system into small fragments, calculate the quantum mechanical energies of these fragments,
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and then sum the separate fragment energies to obtain the energy of the whole system. The

core of our algorithm is a novel patching scheme that sums the fragment energies in such

a way that the artificial boundary effects caused by the division of the system essentially

cancel out.

Our division/patching scheme is illustrated in Figure 1, which uses a 2 dimensional system

for clarity. In Figure 1, a periodic supercell is divided into m1×m2 small pieces. From each

grid corner (i, j) we can define 4 fragments, with their sizes (S) equal to (in units of the

smallest piece): S= 1 × 1, 1 × 2, 2 × 1 and 2 × 2 respectively. Suppose we calculate

the quantum energy Ei,j,S and charge density ρi,j,S of all of these fragments. Then the total

quantum energy of the system can be computed by: E =
∑

i,j,S αSEi,j,S and the total charge

density by: ρ(r) =
∑

i,j,S αSρi,j,S(r). Here αS = 1 for the S= 1 × 1 and 2 × 2 fragments,

and α = −1 for the S=1 × 2 and 2 × 1 fragments [4]. By using the above summation, the

long surface [the edge of (i,j)-(i+2,j) in Fig.1] of the 2 × 1 fragment will cancel the same

surface of the 2× 2 fragments, and the surface of the 1× 1 fragment will cancel out the new

unwanted short surfaces [the edge of (i,j)-(i,j+1)] of the 2 × 1 fragment. Such cancellation

is complete for all the surfaces (edges in Fig.1) and corners after the summation
∑

i,j,S αS

is carried out for all i, j and S in the total energy and charge expression.

The above scheme can be extended to a 3 dimensional system in a straightforward manner.

Here, a periodic supercell is divided into m1×m2×m3 fragments, and from each grid point

corner (i, j, k) we can define 8 fragments, with sizes S(αS) equal to : 1×1×1(−), 1×1×2(+),

1× 2× 1(+), 2× 1× 1(+), 1× 2× 2(−), 2× 1× 2(−), 2× 2× 1(−), and 2× 2× 2(+). Now,

E =
∑

i,j,k,S αSEi,j,k,S. This formula has the same property of cancelling out all the surface,

edge and corner effects.

We can now compare our linear scaling three dimensional fragment (LS3DF) method to

other divide-and-conquer approaches. In the method proposed by W. Yang [6, 7], the spatial

domain is divided into overlapping sub-domains. A positive spatial partition function P (r),

where P (r) equals 1 near the center of the sub-domain and gradually goes to 0 near the

boundary is used for patching the sub-domains. The idea is to use only the central part of

each sub-domain, instead of using boundary effect cancellations as in our method. The use

of the partition function P (r) however, creates some technical problems including how to

partition the kinetic energy [7], how to express the total energy in a variational form and

how to maintain charge neutrality. Note that, by reducing the size of our 2×2×2 fragments
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[4], we can also reduce the overlap between fragments, much as in the method proposed by

Yang [6, 7].

We can also compare our LS3DF method with the fragment molecular orbital (FMO)

method [8]. FMO is specifically designed for biological systems where a long chain molecule

is divided into many small pieces (monomers). In the FMO method, all of the monomer

and monomer-monomer pairs are calculated to take into account the effects produced by the

covalent bonds that are broken in the sub-division. In contrast, we have three dimensional

fragments with different sizes in a spatially compact form. If we identify our smallest 1×1×1

fragment with the monomers in FMO, then we calculate up to 8 monomer clusters (the

2 × 2 × 2 fragments). In summary, LS3DF concentrates on regular spatial location and

division and has a rigorous boundary effect cancellation, unlike FMO. In fact, as we will

show below, the error in LS3DF will drop rapidly as the fragment size increases.

In our implementation of the LS3DF method, we start with a 3D periodic supercell that

is divided into an M = m1×m2×m3 grid. Each atom is assigned to one fragment depending

on its spatial location (which square it falls into in Fig.1). The artificially created surfaces

of the fragments are passivated with hydrogen or partially charged pseudo hydrogen atoms

to fill the dangling bonds [9]. We will denote the fragment wavefunction as ψF,i(r), where

i is the wavefunction index, and F = (i, j, k, S) is the index for the fragment. Note that,

ψF,i(r) is only defined within its own fragment’s spatial domain ΩF , which is of size S plus a

surface buffer region as indicated by the dashed line in Figure 1. We can now write the total

energy Etot of the system as a variational expression in terms of the fragment wavefunctions

ψF,i(r) (for zero temperature calculation):

Etot = 2
∑

F

αF

∑
i=1,NF /2

∫
ψ∗F,i(r)[−

1

2
∇2]ψF,i(r)dr

+ Vion(r)ρtot(r)dr +
1

2

∫
ρtot(r)ρtot(r

′)

|r − r′|
drdr′+∫

εxc(ρtot(r))ρtot(r)dr +
∑

F

αF

∫
∆VF (r)ρF (r)dr (1)

where ρtot(r) =
∑

F αFρF (r), αF = αS, and the fragment charge density ρF (r) =

2
∑

i=1,NF /2 |ψF,i(r)|2, where NF is the total number of electrons in fragment F after passiva-

tion. Vion(r) in Eq.(1) is the total ionic potential. The term ∆VF (r) is an additional surface
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passivation that is only nonzero near the boundary of the fragment. For different fragments

sharing a same boundary B, their ∆VF (r) at that boundary B should be the same. Due to

the fragment cancellations, the net value of the last term in Eq.(1) should be small. The

amplitude of this term can be used as a measure of the accuracy for this method.

The total energy Etot is a variational minimum (or maximum, depending on the sign of

αF ) with regard to ψF,i(r), subject to the orthonormal constraints:
∫

ΩF
ψ∗F,i(r)ψF,j(r)dr =

δi,j. Thus, we can derive the fragment Kohn-Sham equation from δEtot/δψ
∗
F,i(r) =

2αF εF,iψF,i(r), which results in:

[−1

2
∇2 + VF (r)]ψF,i(r) = εF,iψF,i(r), (2)

where

VF (r) = Vtot + ∆VF (r) for r ∈ ΩF , (3)

and Vtot(r) is the usual local density approximation (LDA) total potential calculated from

ρtot by solving a global Poisson equation for the whole system. Of practical importance is

the observation that the calculations in Eq.(2) can be carried out independently for each

fragment making the computation trivially parallel. The charge density self consistency can

be achieved iteratively using the usual potential mixing scheme [1] for Vtot. Due to the varia-

tional principle, atomic forces can be calculated using the Hellman-Feyman theory. To com-

pute the surface passivation potential, we have used the atomic charge densities to construct

a ρF,atom(r), ρtot,atom(r), and Vtot,atom(r). From ρF,atom(r) we have also calculated a VF,atom(r)

using a LDA formula for the fragment. We then have ∆VF (r) = VF,atom(r)−Vtot,atom(r). To

assure that ∆VF (r) at a given boundary B is the same for fragments sharing this common

boundary, we take the average among all of the fragments sharing this boundary. With the

vacuum buffer region, we have used a planewave expansion for the wavefunctions ψF,i(r) and

norm conserving pseudopotentials for the Hamiltonian. Eq. (2) is solved using a conjugated

gradient method based on the planewave code, PEtot [11].

III. NUMERICAL TEST

We first compare the LS3DF method against the direct LDA method for a Si235H104

quantum dot (QD) with surface hydrogen passivation and a planewave basis set cutoff of

35 Ryd. The smallest 1 × 1 × 1 fragment we used for these comparisons is an 8 atom unit
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cell. With these parameters, the total energy difference between the LS3DF method and the

direct LDA method is 3 meV/atom. The average charge density difference is 0.2%, while the

average atomic force difference is 5× 10−5 a.u. We also tested Si slabs and rods, and CdSe

quantum dots (where an internal electric field exists). The errors for those tests are similar

to the above Si QD results. To test the fragment size effects more systematically, we have

calculated the bulk Si with LS3DF method. Our results, shown in Table I, indicate that the

errors drop rapidly as the fragment size increases from 0.5a to 1.5a (a is the lattice constant

of bulk Si). We note that the total energy error does increase a bit in going from 1.0a to

1.5a, however. This is due to the use of negative fragments, which allows the computed

energy to approach the exact result from both above and below. A more robust number is

the charge density error, which drops rapidly with the fragment size. We also calculated the

quantum dot polarization under an external electric field in a Si quantum dot using the 1.0a

fragment size. The LS3DF and direct LDA differences for the response charge and total

induced dipole moment are both about 2%. Thus, we claim that, with a 1.0a fragment size,

the LS3DF method is accurate enough for most practical calculations.

Figure 2 shows the convergence of the self consistent iterations. One can see that the

LS3DF method has a convergence rate similar to the direct LDA method, avoiding the

convergence problems seen in some of the other O(N) methods [12]. Since each fragment

Kohn-Sham equation is solved independently, the parallelization of this method is straight-

forward. The time spent on the global Poisson equation is only a fraction (less than 5%) of

the total computational time. As a result, we have been able to achieve an excellent (up to

80%) linear scaling with the number of processors (up to 8000 processors in our tests). Based

on actual computer total floating point operations counts, the cross over size of the linear

scaling LS3DF method and the O(N3) scaling direct LDA method is around 500 atoms with

the 1.0a fragment size. To demonstrate the power of the LS3DF method, we have calculated

a 15,000 atom Si quantum dot, which took 30 minutes for one selfconsistent iteration using

2048 processors on an IBM SP Power3 machine. By comparison, if a direct LDA method

had been used, it would have taken a few months using the same number of processors [14].

The reported cross overs with direct LDA calculation for localized orbital and density

matrix methods are about 500 atoms. Since these cross overs is similar to ours for similar

accuracy, we can deduce that the LS3DF method should be as efficient as those O(N)

methods [12]. Alternatively, one can also estimate the computational cost (for a system
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with 2N electrons) as follows. First, note that for an accurate LS3DF calculation, it is

not necessary to have small quantum confinement effects for the fragments. It is only

necessary for one side of the fragment to have a small effect on the opposite side in terms

of density and kinetic energy density. Such effects should have a similar decay length as

the localized Wannier function, because the densities can be expressed as the sum of the

Wannier function squared. In practice, we do find that the 64 atom 2× 2× 2 fragment size

is similar to the orbital size in the localized orbital method for similar accuracies [12]. Most

of the LS3DF computational cost is in the computation of the 2 × 2 × 2 fragments. There

are M = m1 ×m2 ×m3 such fragments, each with 16N/M electrons. Thus, in total, there

will be 8N fragment wavefunctions each in a domain of Ω. In the localized orbital method,

the number of localized wavefunctions is about N to 2N depending on the implementation

[12]. Our method can be as efficient as the localized orbital method because the iterative

convergence of the fragment wavefunctions is fast due to the wavefunction decoupling of

the fragments, and the O(N3) step for each fragment calculation is not dominating for the

fragment sizes we are using.

We next study the total dipole moments of CdSe quantum dots, which only becomes

computationally amenable due to the development of our LS3DF method. This is a long-

standing physics problem that stems back more than 10 years [13]. Experimentally, it was

found that not only there are dipole moments for wurtzite structure CdSe quantum dots and

rods [15, 16], but there are also similar magnitude dipole moments for zincblende structure

ZnSe quantum dots [15] (which should not have a bulk contribution due to the zincblende

symmetry). As such, there has been a controversy regarding the cause of the measured

dipole moment: intrinsic bulk dipole [16], or surface passivation [15]?

We first calculated the dipole moments for a small 178 atom wurtzite CdSe quantum dot.

Using a 1×1×1 fragment of 12 Cd+Se atoms, the LS3DF z-direction (c-axis) dipole moment

was computed to be 3.52 a.u, while the LDA result was 3.49 a.u. The absolute difference

(0.03 a.u.) is much smaller than the error introduced by using different pseudopotentials.

In the dipole moment calculation, the Poisson equation is solved using an open boundary

condition, instead of a periodic boundary condition, for the whole system, so there are no

neighboring dipole-dipole interactions.

We have calculated four similarly sized elongated CdSe quantum dots (rods) containing

a few thousand atoms as shown in Figure 3. Two dots are in a wurtzite (WZ) structure and
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two are in a zincblende (ZB) structure. Experimental crystal structures and internal atomic

coordinates are used for the CdSe WZ structure. Due to the lack of experimental surface

passivation details at the atomic level, we used pseudo hydrogen atoms to fill the surface

dangling bonds, representing an ideal passivation situation [9]. These surface H atoms are

placed at the center positions of the cut off bonds. To study the effects of different surface

passivations, we chose two types of surface models, one with both Cd and Se atoms on

the surface (Cd+Se terminated) and the other with only Cd atoms on the surface (Cd

terminated).

Our final results are listed in Table II. We can see that the total dipole moment depend

sensitively on the crystal structure. For ZB structure, the dipole moment is negative, while it

is positive for WZ structure. Due to the symmetry, ZB doesn’t have bulk dipole contribution.

So the dipole moments of the ZB quantum rod structures must come from the their surface

passivations. This effect of the surface contribution is tested by changing the Cd and Se

terminated surface to Cd only terminated surface (Fig.3). We see that this change adds

a positive dipole moment to both the ZB and WZ nanorods. Overall, the WZ nanorods

have much larger dipole moments. One can attempt to separate the bulk and surface

contributions of the WZ dipole moments by assuming that the the surface dipole moments

for ZB and WZ nanorods are the same for the same type of surface termination (either Cd

termination or Cd+Se termination). Thus, by subtracting the ZB dipole moments from the

corresponding WZ dipole moments, we get the bulk dipole contributions of 73.3 and 84.1

a.u. for the Cd714Se724 and Cd916Se724 WZ quantum dots respectively. They are exactly

proportional to their total number of Cd and Se atoms. The spontaneous polarization bulk

dipole moment of WZ structure can been calculated from a bulk WZ/ZB supercell [17], and

we have P0 = 0.0143(NCd + NSe) a.u. Using this formula, the total bulk contributions for

the above two WZ quantum dots should be 20.5 and 23.5 a.u. respectively. Curiously, these

estimated bulk contributions are about 3.6 times smaller than the direct calculated results.

Further work is under way to explain this difference.

Finally, to study the effect of the dipole moment on the internal electronic structure of

nanorods, we have taken the potential Vtot of Eq.(3) and calculated the band edge electron

and hole states of the whole quantum dot using the folded spectrum method [18]. As shown

in Figure 4, the electrons and holes are localized on opposite ends of the rod, indicating the

importance of the internal electric fields induced by the dipole moments in such quantum
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dots.

IV. CONCLUSION

In conclusion, we have presented a new divide-and-conquer linear scaling method for ab

initio total energy calculations. The current method has the following features: (1) It has a

variational formalism, which allows the calculation of atomic forces using Hellman-Feyman

theory; (2) It is very accurate, with a total energy error of about a few meV/atom; (3)

It is simple, and can be implemented by modifying existing ab initio packages; (4) It can

be parallelized easily, and can scale to thousands of processors; (5) It can be applied to

quantum mechanical methods other than the density functional theory.
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TABLE I: The convergence of the LS3DF results comparing with direct LDA results for bulk Si

calculations. The fragment sizes 0.5a, 1a, 1.5a correspond to 8, 64, 216 Si atoms in the 2 × 2 × 2

fragments respectively. ∆E is the total energy error, ∆ρ is the total charge density error.

fragment size 0.5a 1a 1.5a

∆E (meV/at) 30 2.9 4.0∑
F αF

∫
∆VFρFdr (meV/at) 213 5.5 1.0

∆ρ 1.1% 0.14% 0.08%

TABLE II: The total z (c-axis) direction dipole moments of CdSe quantum rods (the x,y dipole

components are very small). The total atomic number Natom includes the numbers of Cd, Se and

surface H atoms.

QD Natom Struct. Termin. Dipole(a.u)

Cd954Se718 2616 ZB Cd -13.1

Cd961Se724 2633 WZ Cd 71.0

Cd715Se718 1955 ZB Cd+Se -21.5

Cd714Se724 1956 WZ Cd+Se 51.8

Ω2x2

FIG. 1: A schematic view of the division of the space into fragments.
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FIG. 2: Selfconsistent convergence curves for LS3DF and direct LDA method.
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FIG. 3: The four calculated CdSe nanorods. The green atoms are Cd, yellow atoms are Se, and

white atoms are surface hydrogen.

FIG. 4: The electron (red) and hole (green) states shown in their isosurfaces with an isovalue of

0.0002 e/Bohr3 in the Cd961Se724 wurtzite structure quantum rods with Cd atom terminations.
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